If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-247=0
a = 3; b = 0; c = -247;
Δ = b2-4ac
Δ = 02-4·3·(-247)
Δ = 2964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2964}=\sqrt{4*741}=\sqrt{4}*\sqrt{741}=2\sqrt{741}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{741}}{2*3}=\frac{0-2\sqrt{741}}{6} =-\frac{2\sqrt{741}}{6} =-\frac{\sqrt{741}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{741}}{2*3}=\frac{0+2\sqrt{741}}{6} =\frac{2\sqrt{741}}{6} =\frac{\sqrt{741}}{3} $
| -2(w-10)=5w-19 | | 2(x-8)=64 | | H=-4t^2-80t | | 5*(1.2)^x=1000000 | | x2+9x+4=0 | | 3j+8+5j=2j+56 | | 130.3+19.55=200-x | | 5b+3(-2b-3)=-12 | | v+72=10v | | 30-2u=4u | | Y=18x^2+30x+8 | | -q+5=2q-23+q | | 15x+4-3=15 | | 39=95c+32 | | N-2x180=3240 | | 2+5x=0.5 | | x/3-x-2=7/3 | | 2x^2-4x/7=0 | | X=43.90+.4x | | 18-6p=4-4p | | 3a+1=5a-2 | | I6c-20=2c | | 1/2x(x)=1 | | 8x/x=8 | | (X)x3=3 | | 8x+9x+3=5 | | -9-(9x-6)=3(4x+6)x | | 7n+4n-8-3n2n=30 | | 0.32(5x-2)=0.8x+14 | | 42=-8x+13x | | 3/7t-5=19 | | x^2+800x-640000=0 |